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Introduction

Quantum information stands at the confluence of quantum mechanics and information theory,

wielding the mathematical elegance of both realms to delve into the profound nature of information

processing at the quantum level. In classical information theory, bits are the fundamental units

representing 0 and 1. Quantum information theory, however, introduces the concept of qubits, the

quantum counterparts to classical bits. Unlike classical bits, qubits can exist in a superposition of

states, allowing them to be both 0 and 1 simultaneously. This unique property empowers quantum

computers to perform certain calculations exponentially faster than classical computers.

Entanglement is a crucial phenomenon in quantum theory where two or more particles become

closely connected. When particles are entangled, changing the state of one immediately affects

the state of the other, no matter the distance between them. This has important implications for

quantum information and computing, offering new possibilities for unique ways of handling

Quantum algorithms, such as Shor’s algorithm for factoring large numbers and Grover’s al-

gorithm for quantum search, exemplify the power of quantum information in tackling complex

computational tasks with unparalleled efficiency.

In order to treat information processing in quantum systems, it is necessary to mathematically

formulate fundamental concepts such as quantum systems, states, and measurements, etc. Useful

tools for researching quantum information are functional analysis and matrix theory. First, we

consider the quantum system. It is described by a Hilbert space H, which is called a representation

space. This will be advantageous because it is not only the underlying basis of quantum mechanics

but is also as helpful in introducing the special notation used for quantum mechanics. The (pure)

physical states of the system correspond to unit vectors of the Hilbert space. This correspondence

is not 1-1. When f1 and f2 are unit vectors, then the corresponding states are identical if f1 = zf2

for a complex number z of modulus 1 . Such z is often called phase. The pure physical state of the

system determines a corresponding state vector up to a phase. Traditional quantum mechanics

distinguishes between pure states and mixed states. Mixed states are described by density matrices.

A density matrix or statistical operator is a positive matrix of trace 1 on the Hilbert space. This

means that the space has a basis consisting of eigenvectors of the statistical operator and the sum

of eigenvalues is 1. In quantum information theory, distance functions are used to measure the

distance between two mixed states. Additionally, these distance functions can be employed to

characterize the properties of a given quantum state. For instance, they can quantify the quantum

entanglement between two parts of a state, representing the shortest distance between the state

and the set of all separable states. These distance functions naturally extend to the set of positive

semi-definite matrices, which is also the main focus of this thesis.

Nowadays, the significance of matrix theory has been widely recognized across various fields,

including engineering, probability and statistics, quantum information, numerical analysis, biolog-

ical and social sciences. In image processing (subdivision schemes), medical imaging (MRI), radar
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signal processing, statistical biology (DNA/genome), and machine learning, data from numerous

experiments are stored as positive definite matrices. To work with each set of data, we need to

select its representative element. In other words, we need to compute the average of the corre-

sponding positive definite matrices. Therefore, considering global solutions of the least-squares

problems for matrices is of paramount importance (refer to [2, 8, 18, 28, 67, 73] for examples).

Let 0 < a ≤ x ≤ b. Consider the following least squares problem:

d2(x, a) + d2(x, b) → min, x ∈ [a, b],

where d := dE(x, y) = |y − x|, or, d := dR(x, y) := | log(y)− log(x)|.

The arithmetic mean (a+b)/2 and the geometric mean
√
ab are unique solutions to the above prob-

lem with respect to dE and dR distance, respectively. Moreover, based on the AM-GM inequality

for two non-negative numbers a and b, we have a new distance as follows

d(a, b) =
a+ b

2
−

√
ab.

For A,B ∈ Pn, some matrix analogs of scalar distances are:

• Euclidean distance induced from Euclidean/Frobenius inner product 〈A,B〉 = Tr(A∗B). The

associated norm is AF = 〈A,A〉1/2 = (Tr(A∗A))1/2.

• The Riemann distance [12] is δR(A,B) = || log(A−1B)||2 =


n

i=1

log2 λi(A
−1B)

1/2

.

• Bures-Wasserstein distance [13] in the theory of optimal transport :

db(A,B) =

Tr(A+B)− 2Tr


A1/2BA1/2

1/21/2

.

• The Log-Determinant metric [75] in machine learning and quantum information:

dl(A,B) = log det
A+B

2
− 2 log det(AB).

• The Hellinger metric or Bhattacharya metric [73] in quantum information :

dh(A,B) =

Tr(A+B)− 2Tr


A1/2B1/2

1/2
.

In applications, one are sometimes interested in distance-like functions that provide distance

between two data points. Such functions are not necessarily symmetric; and the triangle inequality

does not need to be true. Divergences [11] are such distance-like functions .

2



Definition. A smooth function Φ : Pn × Pn → R+ is called a quantum divergence if

(i) Φ(A,B) = 0 if and only if A = B.

(ii) The derivative DΦ with respect to the second variable vanishes on the diagonal, i.e.,

DΦ(A,X)|X=A = 0.

(iii) The second derivative D2Φ is positive on the diagonal, i.e.,

D2Φ(A,X)|X=A(Y, Y ) ≥ 0 for all Hermitian matrix Y.

Some divergences that have recently received a lot of attention are in [11, 14, 35, 56].

Now let us revisit the scalar mean theory which serves as a starting point for our next problem

in this thesis.

A scalar mean of non-negative numbers is a function from R+ × R+to R+such that:

1) M(x, x) = x for every x ∈ R+.

2) M(x, y) = M(y, x) for every x, y ∈ R+.

3) If x < y, then x < M(x, y) < y.

4) If x < x0 and y < y0, then M(x, y) < M (x0, y0).

5) M(x, y) is continuous.

6) M(tx, ty) = tM(x, y) for t, x, y ∈ R+.

A two-variable function M(x, y) satisfying condition 6) can be reduced to a one-variable func-

tion f(x) := M(1, x). Namely, M(x, y) is recovered from f as M(x, y) = xf (x−1y). Notice that

the function f , corresponding to M is monotone increasing on R+. And this relation forms a

one-to-one correspondence between means and monotone increasing functions on R+.

The following are some desired properties of any object that is called a mean M on H+
n .

(A1). Positivity: A,B  0 ⇒ M(A,B)  0.

(A2). Monotonicity: A  A′, B  B′ ⇒ M(A,B)  M (A′, B′).

(A3). Positive homogeneity: M(kA, kB) = kM(A,B) for k ∈ R+.

(A4). Transformer inequality: X∗M(A,B)X  M (X∗AX,X∗BX) for X ∈ B(H).

(A5). Congruence invariance: X∗M(A,B)X = M (X∗AX,X∗BX) for invertible X ∈ B(H).
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(A6). Concavity: M (tA+ (1− t)B, tA′ + (1− t)B′)  tM (A,A′) + (1− t)M (B,B′) for t ∈ [0, 1].

(A7). Continuity from above: if An ↓ A and Bn ↓ B, then M (An, Bn) ↓ M(A,B).

(A8). Betweenness: if A  B, then A  M(A,B)  B.

(A9). Fixed point property: M(A,A) = A.

To study matrix or operator means in general, we must first consider three classical means

in mathematics: arithmetic, geometric, and harmonic means. These means are defined in the

following manner, respectively,

A∇B =
1

2
(A+B),

AB = A1/2

A−1/2BA−1/2

1/2
A1/2,

and

A!B = 2(A−1 +B−1)−1.

In the above definitions, if matrix A is not invertible, we replace A with A = A+ I and then let

 tend to 0 (similarly for matrix B). It can be seen that the arithmetic, harmonic and geometric

means share the properties (A1)-(A9) in common. In 1980, Kubo and Ando [54] developed an

axiomatic theory of operator mean on H+
n . At first, they defined a connection of two matrices as

follows (the term connection comes from the study of electrical network connections).

Definition. A connection on H+
n is a binary operation σ on H+

n satisfying the following axioms

for all A,A′, B,B′, C ∈ H+
n :

(M1). Monotonicity: A  A′, B  B′ =⇒ AσB  A′σB′.

(M2). Transformer inequality: C(AσB)C  (CAC)σ(CBC).

(M3). Joint continuity from above: if An, Bn ∈ B(H)+satisfy An ↓ A and Bn ↓ B, then AnσBn ↓
AσB.

A mean is a connection with normalization condition

(M4) IσI = I.

To each connection σ corresponds its transpose σ′ defined by Aσ′B = BσA. A connection σ

is symmetric by definition if σ = σ′. The adjoint of σ, denoted by σ∗, is defined by Aσ∗B =

(A−1σB−1)
−1

, for invertible A,B. When σ is a non-zero connection, its dual, in symbol σ⊥, is

defined by σ⊥ = (σ′)∗ = (σ∗)′.

However, Kubo-Ando theory of means still has many limitations. In applied and engineering

fields, people need more classes of means that are non Kubo-Ando. For some non Kubo-Ando

means we refer the interested readers to [17, 23, 25, 35, 37].
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One of the famous non-Kubo-Ando means is the spectral geometric mean [37], denoted as AB,

introduced in 1997 by Fiedler and Ptk . It is called the spectral geometric mean because (AB)2 is

similar to AB and that the eigenvalues of their spectral mean are the positive square roots of the

corresponding eigenvalues of AB. In 2015, Kim and Lee [52] defined the weighted spectral mean:

AtB :=

A−1B

t
A

A−1B

t
, t ∈ [0, 1].

In this thesis we focus on two problems:

1. Distance function generated by operator means. We introduce some new distance on

the set of positive definite matrices in the relation to operator means, and their applications.

In addition, we also study some geometric properties for means such as the in-betweenness

property, and data processing inequality in quantum information.

2. A new weighted spectral geometric mean. We introduce a new weighted spectral

geometric mean, denoted by Ft(A,B) and study basic properties for this quantity. We also

establish a weak log-majorization relation involving Ft(A,B) and the Lie-Trotter formula for

Ft(A,B).

The main tools in our research are the spectral theorem for Hermitian matrices and the theory of

Kubo-Ando means. Some fundamental techniques in the theory of operator monotone functions

and operator convex functions are also utilized in the dissertation. We also employ basic knowledge

in matrix theory involving unitarily invariant norms, trace, etc.

The main results in this thesis are presented in the following articles:

1. Vuong T.D., Vo B.K (2020), “An inequality for quantum fidelity”, Quy Nhon Univ. J. Sci.,

4 (3).

2. Dinh T.H., Le C.T., Vo B.K, Vuong T.D. (2021), “Weighted Hellinger distance and in be-

tweenness property”, Math. Ine. Appls., 24, 157-165.

3. Dinh T.H., Le C.T., Vo B.K., Vuong T.D. (2021), “The α-z-Bures Wasserstein divergence”,

Linear Algebra Appl., 624, 267-280.

4. Dinh T.H., Le C.T., Vuong T.D., α-z-fidelity and α-z-weighted right mean, Submitted.

5. Dinh T.H., Tam T.Y., Vuong T.D, On new weighted spectral geometric mean, Submitted.

They were presented on the seminars at the Department of Mathematics and Statistics at Quy

Nhon University and at the following international workshops and conferences as follows:

1. First SIBAU-NU Workshop on Matrix Analysis and Linear Algebra, 15-17 October, 2021.
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2. 20th Workshop on Optimization and Scientific Computing, April 21-23, 2022 - Ba Vi, Viet-

nam.

3. International Workshop on Matrix Analysis and Its Applications, June 4, 2022, Quy Nhon,

Viet Nam.

4. The second international workshop on Matrix Theory and Applications, AKFA University,

November, 2022.

5. International Workshop on Matrix Analysis and Its Applications, July 7-8, 2023, Quy Nhon,

Viet Nam.

6. 10th Viet Nam Mathematical Congress, August 8-12, 2023, Da Nang, Viet Nam.

This thesis has introduction, three chapters, conclusion, further investigation, a list of the

author’s papers related to the thesis and preprints related to the topics of the thesis, and a list of

references.

The introduction provides a background on the topics covered in this work and explains why

they are meaningful and relevant. It also briefly summarizes the content of the thesis and highlights

the main results from the main three chapters.
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Chapter 1

Preliminaries

1.1 Matrix theory fundamentals

Let N be the set of all natural numbers. For each n ∈ N, we denote byMn the algebra of all n×n

complex matrices, Hn is the set of all n×n Hermitian matrices, H+
n is the set of n×n positive semi-

definite matrices, Pn is the cone of positive matrices in Mn, and Dn is the set of density matrices

which are the positive matrices with trace equal to one. Denote by I and O the identity and zero

elements of Mn, respectively. This thesis deals with problems for matrices, which are operators in

finite-dimensional Hilbert spaces H. We will indicate if the case is infinite-dimensional.

Recall that for two vectors x = (xj) , y = (yj) ∈ Cn the inner product 〈x, y〉 of x and y is

defined as 〈x, y〉 ≡


j

xj ȳj. Now let A be a matrix in Mn, the conjugate transpose or the adjoint

A∗ of A is the complex conjugate of the transpose AT . We have, 〈Ax, y〉 = 〈x,A∗y〉.

Definition 1.1.1. A matrix A = (aij)
n
i,j=1 ∈ Mn is said to be:

(i) diagonal if aij = 0 when i ∕= j.

(ii) invertible if there exists an matrix B of order n× n such that AB = In. In this situation A

has a unique inverse matrix A−1 ∈ Mn such that A−1A = AA−1 = In.

(iii) normal if AA∗ = A∗A.

(iv) unitary if AA∗ = A∗A = In.

(v) Hermitian if A = A∗.

(vi) positive semi-definite if 〈Ax, x〉 ≥ 0 for all x ∈ Cn.

(vii) positive definite if 〈Ax, x〉 > 0 for all x ∈ Cn\{0}.

Definition 1.1.2 (Lowner’s Order [86]). Let A and B be two Hermitian matrices of same order

n. We say that A ≥ B if and only if A− B is a positive semi-definite matrix.
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Let A ∈ Mn, we denote the eigenvalues of A by λj(A), for j = 1, 2, ..., n. For a matrix A ∈ Mn,

the notation λ(A) ≡ (λ1(A),λ2(A), . . . ,λn(A)) means that λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).

The absolute value of matrix A ∈ Mn is the square root of matrix A∗A and denoted by

|A| = (A∗A)
1
2 .

We call the eigenvalues of |A| by the singular value of A and denote as sj(A), for j = 1, 2, ..., n.

For a matrix A ∈ Mn, the notation s(A) ≡ (s1(A), s2(A), . . . , sn(A)) means that s1(A) ≥ s2(A) ≥
. . . ≥ sn(A).

The trace of a matrix A = (aij) ∈ Mn, denoted by Tr(A), is the sum of all diagonal entries, or,

we often use the sum of all eigenvalues λi(A) of A, i.e.,

Tr(A) =
n

i=1

aii =
n

i=1

λi(A)

Related to the trace of the matrix, we recall the Araki-Lieb-Thirring trace inequality [18] used

consistently throughout the thesis.

Theorem 1.1.1. Let A and B be two positive semi-definite matrices, and let q > 0, we have

Tr

B

r
2ArB

r
2

 q
r


≤ Tr


B

1
2AB

1
2

q
, if r ∈ (0, 1],

and

Tr

B

r
2ArB

r
2

 q
r


≥ Tr


B

1
2AB

1
2

q
, if r ≥ 1.

The determinant of A is denoted and defined by

det(A) =


ρ∈Sn


sgn(ρ)

n

i=1

aiρi


=

n

j=1

λj.

where Sn is the set of all permutations ρ of the set S = {1, 2, . . . , n}.

A function  ·  : Mn → R is said to be a matrix norm if for all A,B ∈ Mn and ∀α ∈ C we

have:

(i) A ≥ 0.

(ii) A = 0 if and only if A = 0.

(iii) αA|| = |α| · ||A||.

(iv) A+B ≤ A+ B.

In addition, a matrix norm is said to be sub-multiplicative matrix norm if

AB ≤ A · B.
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A matrix norm is said to be a unitarily invariant norm if for every A ∈ Mn, we have UAV  =

A for all U, V ∈ Un unitary matrices. It is denoted as | · |.

These are some important norms in Mn.

The operator norm of A, defined by

|A|op =


λ1 (A∗A) = s1(A).

The Ky Fan k-norm is the sum of all singular values, i.e.,

Ak =
k

i=1

si(A).

The Schatten p-norm is defined as

Ap =


n

i=1

spi (A)

1/p

.

When p = 2, we have the Frobenius norm or sometimes called the Hilbert-Schmidt norm :

A2 =

Tr |A|2

1/2
=


n

j=1

s2j(A)

1/2

.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be in Rn. Let x↓ =

x[1] , x[2], . . . , x[n]


denote a

rearrangement of the components of x such that x[1]  x[2]  . . .  x[n]. We say that x is majorized

by y, denoted by x ≺ y, if

k

i=1

x[i] 
k

i=1

y[i], k = 1, 2, . . . , n− 1, and
n

i=1

x[i] =
n

i=1

y[i].

We say that x is weakly majorized by y if
k

i=1

x[i] 
k

i=1

y[i], k = 1, 2, . . . , n, denoted by x ≺w y. If

x > 0 (i.e., xi > 0 for i = 1, . . . , n) and y > 0, we say that x is log-majorized by y, denoted by

x ≺log y, if
k

i=1

x[i] 
k

i=1

y[i], k = 1, 2, . . . , n− 1, and
n

i=1

x[i] =
n

i=1

y[i].

In other words, x ≺log y if and only if log x ≺ log y.

1.2 Matrix function and matrix mean

Now let us recall the spectral theorem which is one of the most important tools in functional

analysis and matrix theory.
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Theorem 1.2.1 (Spectral decomposition, [9]). Let λ1 > λ2 . . . > λk be eigenvalues of a Hermitian

matrix A. Then

A =
k

j=1

λjPj,

where Pj is the orthogonal projection onto the subspace spanned by the eigenvectors associated to

the eigenvalue λj.

For a real-valued function f defined on some interval K ⊂ R and for a self-adjoint matrix

A ∈ Mn with spectrum in K, the matrix f(A) is defined by means of the functional calculus, i.e.,

A =
k

j=1

λjPj =⇒ f(A) :=
k

j=1

f (λj)Pj.

In another words, if A = U diag (λ1, . . . ,λn)U
∗ is a spectral decomposition of A (where U is some

unitary), then

f(A) := U diag (f (λ1) , · · · , f (λn))U
∗.

We are now at the stage where we will discuss matrix/operator functions. Loewner was the first

to study operator monotone functions in his seminal papers [63] in 1930. In the same time, Kraus

investigated the notion operator convex function [55].

Definition 1.2.1 ([63]). A continuous function f defined on an interval K(K ⊂ R) is said to be

operator monotone of order n on K if for two Hermitian matrices A and B in Mn with spectras

in K, one has

A ≤ B implies f(A) ≤ f(B).

If f is operator monotone of any orders then f is called operator monotone.

Theorem 1.2.2 (Lowner-Heinz’s Inequality, [86]). The function f(t) = tr is operator monotone

on [0,∞) for 0 ≤ r ≤ 1. More specifically, for two positive semi-definite matrices such that A ≤ B.

Then

Ar ≤ Br, 0 ≤ r ≤ 1.

Definition 1.2.2 ([55]). A continuous function f defined on an interval K(K ⊂ R) is said to be

operator convex of order n on K if for any Hermitian matrices A and B in Mn with spectra in K

and for all real numbers 0 ≤ λ ≤ 1,

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B).

If f is operator convex of any order n then f is called operator convex. If −f is operator convex

then we call f is operator concave.

Theorem 1.2.3 ([10]). Function f(t) = tr in [0,∞) is operator convex when r ∈ [−1, 0] ∪ [1, 2].

More specifically, for any positive semi-definite matrices A,B and for any λ ∈ [0, 1],

(λA+ (1− λ)B)r ≤ λAr + (1− λ)Br.
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Another important example is the function f(t) = log t, which is operator monotone on (0,∞)

and the function g(t) = t log t is operator convex. The relations between operator monotone and

operator convex via the theorem below.

Theorem 1.2.4 ([9]). Let f be a (continuous) real function on the interval [0,α). Then the

following two conditions are equivalent:

(i) f is operator convex and f(0) ≤ 0.

(ii) The function g(t) =
f(t)

t
is operator monotone on (0,α).

Definition 1.2.3 ([10]). Let f(A,B) be a real valued function of two matrix variables. Then, f

is called jointly concave, if for all 0 ≤ α ≤ 1,

f(αA1 + (1− α)A2,αB1 + (1− α)B2) ≥ αf(A1, B1) + (1− α)f(A2, B2)

for all A1, A2, B1, B2. If −f is jointly concave, we say f is jointly convex.

We will review very quickly some basic concepts of the Fretchet differential calculus, with

special emphasis on matrix analysis. Let X, Y be real Banach spaces, and let L(X, Y ) be the

space of bounded linear operators from X to Y . Let U be an open subset of X. A continuous map

f from U to Y is said to be differentiable at a point u of U if there exists T ∈ L(X, Y ) such that

lim
v→0

f(u+ v)− f(u)− Tv
v = 0.

It is clear that if such a T exists, it is unique. If f is differentiable at u, the operator T above is

called the derivative of f at u. We will use for it the notation Df(u), of ∂f(u). This is sometimes

called the Frchet derivative. If f is differentiable at every point of U , we say that it is differentiable

on U . One can see that, if f is differentiable at u, then for every v ∈ X,

Df(u)(v) =
d

dt


t=0

f(u+ tv).

This is also called the directional derivative of f at u in the direction v. If f1, f2 are two differen-

tiable maps, then f1 + f2 is differentiable and

D (f1 + f2) (u) = Df1(u) +Df2(u).

The composite of two differentiable maps f and g is differentiable and we have the chain rule

D(g ◦ f)(u) = Dg(f(u)) ·Df(u).

One important rule of differentiation for real functions is the product rule: (fg)′ = f ′g + gf ′. If f

and g are two maps with values in a Banach space, their product is not defined - unless the range

is an algebra as well. Still, a general product rule can be established. Let f, g be two differentiable

11



maps from X into Y1, Y2, respectively. Let B be a continuous bilinear map from Y1 × Y2 into Z.

Let ϕ be the map from X to Z defined as ϕ(x) = B(f(x), g(x)). Then for all u, v in X

Dϕ(u)(v) = B(Df(u)(v), g(u)) +B(f(u), Dg(u)(v)).

This is the product rule for differentiation. A special case of this arises when Y1 = Y2 = L(Y ), the

algebra of bounded operators in a Banach space Y . Now ϕ(x) = f(x)g(x) is the usual product of

two operators. The product rule then is

Dϕ(u)(v) = [Df(u)(v)] · g(u) + f(u) · [Dg(u)(v)]

Higher order Frchet derivatives can be identified with multilinear maps. Let f be a differentiable

map from X to Y . At each point u, the derivative Df(u) is an element of the Banach space

L(X, Y ). Thus we have a map Df from X into L(X, Y ), defined as Df : u → Df(u). If this map

is differentiable at a point u, we say that f is twice differentiable at u. The derivative of the map

Df at the point u is called the second derivative of f at u. It is denoted as D2f(u). This is an

element of the space L(X,L(X, Y )). Let L2(X, Y ) be the space of bounded bilinear maps from

X ×X into Y . The elements of this space are maps f from X ×X into Y that are linear in both

variables, and for whom there exists a constant c such that

f (x1, x2) ≤ c x1 x2

for all x1, x2 ∈ X. The infimum of all such c is called f. This is a norm on the space L2(X, Y ),

and the space is a Banach space with this norm. If ϕ is an element of L(X,L(X, Y )), let

ϕ̃ (x1, x2) = [ϕ (x1)] (x2) for x1, x2 ∈ X.

Then ϕ̃ ∈ L2(X, Y ). It is easy to see that the mapϕ → ϕ̃ is an isometric isomorphism. Thus the

second derivative of a twice differentiable map f from X to Y can be thought of as a bilinear map

from X ×X to Y . It is easy to see that this map is symmetric in the two variables; i.e.,

D2f(u) (v1, v2) = D2f(u) (v2, v1)

for all u, v1, v2. Derivatives of higher order can be defined by repeating the above procedure. The

p th derivative of a map f from X to Y can be identified with a p-linear map from the space

X ×X × · · ·×X ( p copies) into Y . A convenient method of calculating the p th derivative of f

is provided by the formula

Dpf(u) (v1, . . . , vp) =
∂p

∂t1 · · · ∂tp


t1=···=tp=0

f (u+ t1v1 + · · ·+ tpvp) .

In connections with electrical engineering, Anderson and Duffin [3] defined the parallel sum of

two positive definite matrices A and B by

A : B =

A−1 +B−1

−1
.

12



The harmonic mean is 2(A : B) which is the dual of the arithmetic mean A∇B =
A+B

2
. In this

period time, Pusz and Woronowicz [69] introduced the geometric mean as

AB := A1/2

A−1/2BA−1/2

1/2
A1/2.

They also proved that the geometric mean is the unique positive solution of the Riccati equation

XA−1X = B.

In 2005, Moakher [65] conducted a study, and then in 2006, Bhatia and Holbrook [14] investigated

the structure of the Riemannian manifold H+
n . They showed that the curve

γ(t) = AtB = A1/2

A−1/2BA−1/2

t
A1/2 (t ∈ [0, 1])

is the unique geodesic joining A and B, and called t-geometric mean or weighted geometric mean.

The weighted harmonic and the weighted arithmetic means are defined by

A!tB =

tA−1 + (1− t)B−1

−1
,

and

A∇tB = tA+ (1− t)B.

The well-known inequality related to these quantities is the harmonic, geometric, and arithmetic

means inequality [47, 60] , that is,

A!tB ≤ AtB ≤ A∇tB.

These three means are Kubo-Ando means. Let’s collect the main content of the Kubo-Ando means

theory in the general case [54]. For x > 0 and t ≥ 0, the function φ(x, t) =
x(1 + t)

x+ t
is bounded and

continuous on the extended half-line [0,∞]. The Lowner theory ([9, 45]) on operator-monotone

functions states that the map m → f , defined by

f(x) =



[0,∞]

φ(x, t)dm(t) for x > 0,

establishes an affine isomorphism from the class of positive Radon measures on [0,∞] onto the

class of operator-monotone functions. In the representation abvove, f(0) = inf
x
f(x) = m({0}) and

inf
x
f(x)/x = m({∞}).

Theorem 1.2.5. [Kubo-Ando] For each operator connection σ, there exists a unique operator

monotone function f : R+ → R+, satisfying

f(t)In = Inσ(tIn), t > 0,

and for A,B > 0 the formula

AσB = A
1
2f(A− 1

2BA− 1
2 )A

1
2

holds, with the right hand side defined via functional calculus, and extended to A,B ≥ 0 as follows

AσB = lim
→0

(A+ In)σ(B + In).

We call f the representing function of σ.
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The next theorem follows from the integral representation of matrix monotone functions and

from the previous theorem.

Theorem 1.2.6. The map, m → σ, defined by

AσB = aA+ bB +



(0,∞)

1 + t

t
{(tA) : B}dm(t)

where

a = m({0}) and b = m({∞}),

establishes an affine isomorphism from the class of positive Radon measures on [0,∞] onto the

class of connections.

If P and Q are two projections, then the explicit formulation for PσQ is simpler.

Theorem 1.2.7. If σ is a mean, then for every pair of projections P and Q

PσQ = a(P − P ∧Q) + b(Q− P ∧Q) + P ∧Q,

where

a = 1σ0 and b = lim
x→∞

(1σx)/x.

An immediate consequence of the above theorem is the following relation for projections P and

Q

P !Q = P ∧Q and P#Q = P ∧Q.

Let f be the representing function of σ. Since xf(x−1) is the representing function of the

transpose σ′, then σ is symmetric if and only if f(x) = xf (x−1) . The next theorem gives the

representation for a symmetric connection.

Theorem 1.2.8. The map, n → σ, defined by

AσB =
c

2
(A+B) +



(0,1]

1 + t

2t
{(tA) : B + A : (tB)}dn(t)

where c = n({0}), establishes an affine isomorphism from the class of positive Radon measures on

the unit interval [0, 1] onto the class of symmetric connections.
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Chapter 2

Weighted Hellinger distance

In recent years, many researchers have paid attention to different distance functions on the

set Pn of positive definite matrices. Along with the traditional Riemannian metric dR(A,B) =
n

i=1

log2 λi(A
−1B)

1/2

(where λi(A
−1B) are eigenvalues of the matrix A−1/2BA−1/2), there are

other important functions. Two of them are the Bures-Wasserstein distance, which are adapted

from the theory of optimal transport [13]:

db(A,B) =

Tr(A+B)− 2Tr((A1/2BA1/2)1/2)

1/2
,

and the Hellinger metric or Bhattacharya metric in quantum information [75]:

dh(A,B) =

Tr(A+B)− 2Tr(A1/2B1/2)

1/2
.

Notice that the metric dh is the same as the Euclidean distance between A1/2 and B1/2, i.e.,

A1/2 − B1/2F .

Recently, Ha [43] introduced the Alpha Procrustes distance as follows: For α > 0 and for two

positive semi-definite matrices A and B,

db,α =
1

α
db(A

2α, B2α).

He showed that the Alpha Procrustes distances are the Riemannian distances corresponding to a

family of Riemannian metrics on the manifold of positive definite matrices, which encompass both

the Log-Euclidean and Wasserstein Riemannian metrics. Since the Alpha Procrustes distances are

defined based on the Bures-Wasserstein distance, we also call them the weighted Bures-Wasserstein

distances. In that flow, in this chapter we can define the weighted Hellinger metric for two positive

semi-definite matrices as follows:

dh,α(A,B) =
1

α
dh(A

2α, B2α),

then investigate its properties within this framework.

The results of this chapter are taken from [32].
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2.1 Weighted Hellinger distance

Definition 2.1.1. For two positive semi-definite matrices A and B and for α > 0, the weighted

Hellinger distance between A and B is defined as

dh,α(A,B) =
1

α
dh(A

2α, B2α) =
1

α
(Tr(A2α +B2α)− 2Tr(AαBα))

1
2 .

Proposition 2.1.1. For two positive semi-definite matrices A and B,

lim
α→0

d2h,α(A,B) = || log(A)− log(B)||2F .

Proposition 2.1.2. For two positive semi-definite matrices A and B,

db,α(A,B) ≤ dh,α(A,B) ≤
√
2db,α(A,B).

2.2 In-betweenness property

In 2016, Audenaert introduced the in-betweenness property of matrix means [5]. We say that

a matrix mean σ satisfies the in-betweenness property with respect to the metric d if for any pair

of positive definite operators A and B,

d(A,AσB) ≤ d(A,B).

In [34], the authors introduced and studied the in-sphere property of matrix means. Dinh, Franco

and Dumitru also published several papers [26, 28] on geometric properties of the matrix power

mean µp(t;A,B) := (tAp + (1 − t)Bp)1/p with respect to different distance functions. They also

considered the case of the matrix power mean in the sense of Kubo-Ando [54] which is defined as

Pp(t, A,B) = A1/2

tI + (1− t)(A−1/2BA−1/2)p

1/p
A1/2.

In this section, we focus our study on the in-betweenness properties of the matrix power means

with respect to the weighted Bures-Wasserstein and weighted Hellinger distances. As a consequence

of the equivalence, using the operator convexity and concavity of the power functions, we show

that the matrix power mean satisfies the in-betweenness property with respect to dh,α (Theorem

2.2.1) and db,α (Theorem 2.2.2). We also show that among symmetric means, the arithmetic mean

is the only one that satisfies the in-betweenness property in the weighted Bures-Wasserstein and

weighted Hellinger distances.

Theorem 2.2.1. Let 0 < p/2 ≤ α ≤ p and 0 ≤ t ≤ 1. Then

dh,α(A, µp(t;A,B)) ≤ dh,α(A,B),

for all A,B ∈ H+
n .
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Theorem 2.2.2. Let 0 < p/2 ≤ α ≤ p and 1/2 ≤ t ≤ 1. Then,

db,α(A, µp(t;A,B)) ≤ db,α(A,B),

for all A,B ∈ H+
n .

In [28, Theorem 2] the authors proved that the matrix Kubo-Ando power mean Pp(t, A,B) satis-

fies the in-betweenness property which follows from the fact that the function g(t) = Tr(A1/2Pp(t;A,B)1/2)

is concave. Note that Pt(A,B) ∕= Pt(B,A), i.e., Pt is not symmetric. However, for the symmetric

means we may have the following result whose proof is adapted from [22].

Theorem 2.2.3. Let σ be a symmetric mean and assume that one of the following inequalities

holds for any pair of positive definite matrices A and B:

dh,α(A,AσB) ≤ dh,α(A,B) (2.1)

or

db,α(A,AσB) ≤ db,α(A,B). (2.2)

Then σ is the arithmetic mean.

In this chapter, we introduce a new distance called the weighted Hellinger distance and inves-

tigate its properties. This distance is constructed based on Minh’s approach when he constructed

the weighted Bures distance. The weighted Bures distance is an extended version with one param-

eter of the Bures distance. In the next chapter, we introduce a new quantum divergence called the

α-z-Bures Wasserstein divergence, which is considered as an extension with two parameters of the

Bures distance.
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Chapter 3

The α-z-Bures Wasserstein divergence

It is well-known that in the Riemannian manifold of positive definite matrices, the weighted

geometric mean AtB = A1/2(A−1/2BA−1/2)tA1/2 is the unique geodesic joining A and B, where

A,B ∈ Pn. For t = 1/2, A1/2B is called the geometric mean of A and B. It is obvious that

A1/2B is a matrix generalization of the geometric mean
√
ab of positive numbers a and b. Let

A1, A2, · · · , Am be positive definite matrices. In 2004, Moakher [65] and then Bhatia and Holbrook

[14] studied the following least squares problem

min
X>0

m

i=1

δ22(X,Ai), (3.1)

where δ2(A,B) = || log(A−1B)||2 is the Riemannian distance between A and B. They showed that

(3.1) has a unique solution which is called the Karcher mean of A1, A2, · · · , Am. In literature, this

mean has different names such as: Fréchet mean, Cartan mean, Riemannian center of mass. It

turns out that the solution of (3.1) is the unique positive definite solution of the Karcher equation

m

i=1

log(X1/2AiX
1/2) = 0. (3.2)

In [60], Lim and Palfia showed that the solution of (3.2) is nothing but the limit of the solution of

the following matrix equation as t → 0,

X =
m

i=1

1

m
XtAi. (3.3)

Recently, Franco and Dumitru [38] introduced the so-called Renyi power means of matrices.

More precisely, for 0 < αi ≤ zi ≤ 1 and for positive definite matrices Ai, Bi, using the approach in

[60] developed by Lim and Pálfia, they showed that the following equation

X =
m

i=1

ωiPαi,zi(X,Ai) (3.4)
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had a unique positive definite solution, where (ωi) is a probability vector and Pα,z(A,B) =

(B
1−α
2z A

α
z B

1−α
2z )z-the matrix function in the α-z-Renyi relative entropy introduced by Audenaert

and Datta [7] in 2015. Notice that if we replace Pαi,zi(X,Ai) in (3.4) with the weighted geometric

mean XtAi, the solution of the corresponding matrix equation is the weighted power mean.

Now, notice that if we change the distance function in (3.1), the solution may be different,

if exists. Interestingly, in applications people sometimes are interested in distance-like functions

that provide distance between two data points. Such functions are not necessarily symmetric; and

the triangle inequality does not need to be true. Divergences are such distance-like functions. An

important example of divergences is the Bures-Wasserstein metric studied by Bhatia and coauthors

[13] as follows:

db(A,B) = (Tr((A+B)/2)− Tr(A1/2BA1/2)1/2)1/2,

where Tr((A1/2BA1/2)1/2) is the quantum fidelity of two positive definite matrices A and B. They

showed that d2b is a quantum divergence and solved the least squares problem with respect to

the Bures-Wasserstein divergence. In another paper [14], these authors introduced so called the

weighted Bures-Wasserstein distance as

db,t(A,B) = (Tr((1− t)A+ tB)− Tr(Ft(A,B))1/2,

where Ft(A,B) = Tr(A
1−t
2t BA

1−t
2t )t is the sandwiched quasi-relative entropy [59, 79]. They also

solved the least squares problem with respect to this divergence. Mention that (A1/2BA1/2)1/2 and

(A
1−t
2t BA

1−t
2t )t are matrix generalizations of the geometric mean

√
ab and the weighted geometric

mean a1−tbt of positive numbers a and b, respectively.

Motivated by works mentioned above, in this chapter, we introduce and study different prop-

erties of the α-z-Bures Wasserstein divergence defined as

Φ(A,B) = Tr((1− α)A+ αB)− Tr(Qα,z(A,B)), (3.5)

wheneverA andB are positive definite matrices, andQα,z(A,B) = Pα,z(B,A).Note thatQα,z(A,B)

is also a parameterized matrix version of the weighted geometric mean a1−αbα.

The results of this chapter are taken from [30, 31, 32, 77].

3.1 The α-z-Bures Wasserstein divergence and the least

squares problem

Theorem 3.1.1. Let 0 ≤ α ≤ z ≤ 1. Then the quantity

Φ(X, Y ) = Tr((1− α)X + αY )− Tr(Qα,z(X, Y )) (X, Y > 0)

is a divergence.
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We also solve the least square problem with respect to Φ(A,B) and showed that the so-

lution of this problem is exactly the unique positive definite solution of the matrix equation
m

i=1

wiQα,z (X,Ai) = X.

Theorem 3.1.2. For 0 ≤ α ≤ z ≤ 1, the function

F (X) =
m

i=1

ωiΦ(Ai, X)

attains minimum at X0, where X0 is the unique positive definite solution of the following matrix

equation
m

i=1

wiQα,z(X,Ai) = X.

In [49], M. Jeong and co-authors investigated this solution and denoted it by Rα,z(ω,A)-called
α-z-weighted right mean. Then, we continued studying this quantity and get some new results.

Theorem 3.1.3. Let 0 ≤ α ≤ z ≤ 1,α ∕= 1, z ∕= 0. Let A = (A1, ..., Am) be an m-tuple of positive

definite matrices, and ω = (w1, ..., wm) a probability vector. We have

1 + z − α

1− α
I − z

1− α

m

j=1

wjA
− 1−α

z
j ≤ Rα,z(ω,A) ≤

1 + z − α

1− α
I − z

1− α

m

j=1

wjA
1−α
z

j

−1

.

The second inequality holds when (1 + z − α)I − z
m
j=1

wjA
1−α
z

j is invertible.

Hwang and Kim [48] proved that for any weighted m-mean Gm between arithmetic mean and

geometric mean, the function Gω
m := Gm(ω, ·) : Pm → P is differentiable at I = (I, ..., I) with

DGω
n (I)(X1, ..., Xm) =

m

j=1

wjXj.

Notice that the α-z-weighted right mean does not satisfy the above condition. However, we do

have a similar result as follows.

Theorem 3.1.4. Let ω = (w1, ..., wm) be a probability vector and let Rω
α,z := Rα,z(ω, ·) : Pm

n −→
Pn. Then Rω

α,z is differentiable at I = (I, ..., I), and

DRω
α,z(I)(X1, ..., Xm) =

m

j=1

wjXj.

Lastly, we prove that Rα,z(ω,A) is a multivariate Lie-Trotter mean.

Theorem 3.1.5. The Rα,z(ω,A) is the multivariate Lie-Trotter mean, that means, for any prob-

ability vector ω = (w1, w2, ., wm), we have

lim
s→0

Rα,z(ω, γ1(s), ..., γm(s))
1/s = exp

 m

j=1

wjγ
′
j(0)


,

where for ε > 0, γj : (−ε, ε) −→ Pn are differentiable curves with γj(0) = I, for all j = 1, 2, ...,m.
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3.2 Data processing inequality and in-betweenness prop-

erty

In this section, we show that this divergence satisfies the data processing inequality (DPI) in

quantum information. The data processing inequality is an information-theoretic concept that

states that the information content of a signal cannot be increased via a local physical operation.

This can be expressed concisely as post-processing cannot increase information, that is, for any

completely positive trace preserving map E and for any positive semi-definite matrices A and B,

Φ(E(A), E(B)) ≤ Φ(A,B).

Furthermore, we show that the matrix power mean µ(t, A,B) = ((1− t)Ap + tBp)1/p satisfies

the in-betweenness property with respect to the α-z-Bures Wasserstein divergence.

Theorem 3.2.2. Let A,B ∈ Pn, 0 < α ≤ z ≤ 1, 1/2 ≤ p ≤ 1 and α ≤ zp. Then for any positive

definite matrices A and B,

Φ(A, µp) ≤ Φ(A,B).

3.3 Quantum fidelity and its parameterized versions

Quantum fidelity is an important quantity in quantum information theory and quantum chaos

theory. It is a distance measure between density matrices, which are considered as quantum states.

Although it is not a metric, it has many useful properties that can be used to define a metric on

the space of density matrices. In the next section, we give some properties for quantum fidelity

and its extended version. An important results is we establish some variational principles for the

quantum α-z-fidelity

fα,z(ρ, σ) := Tr

ρα/2zσ(1−α)/zρα/2z

z
= Tr


σ(1−α)/2zρα/zσ(1−α)/2z

z
,

where ρ and σ are two postitive definite matrices. That is, it is the extremal value of two matrix

functions

P (X) = zTr

σ

z−α
2z ρ

α
z σ

z−α
2z X


− (z − 1)Tr


σ

z−1
2z Xσ

z−1
2z

 z
z−1

,

and

Q(X) =

Tr(σ

z−α
2z ρ

α
z σ

z−α
2z X)

z

.

Tr(σ

z−1
2z Xσ

z−1
2x )

z
z−1

1−z

.

Theorem 3.3.4. Let ρ, σ be positive definite matrices and 0 < α < z < 1. We have

(i) fα,z(ρ, σ) = min
X>0

P (X).

(ii) fα,z(ρ, σ) = min
X>0

Q(X).

Furthermore, the minimum is achieved at X0 = σ
1−z
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−z
2z .
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3.4 The α-z-fidelity between unitary orbits

At the last section of this chapter, we use fα,z to measure the distance between two quantum

orbits and prove that the set of these distace is a close interval in R+.

Theorem 3.4.2. Let ρ and σ ∈ Dn, the α-z-fidelity fα,z(ρ, σ) = Tr

σ

1−α
2z ρ

α
z σ

1−α
2z

z

between the

unitary orbits Uρ and Uσ satifies

max
U∈U(H)

fα,z(ρ, UσU∗) =
n

i=1

λ↓
i (ρ)

αλ↓
i (σ)

1−α,

and

min
U∈U(H)

fα,z(ρ, UσU∗) =
n

i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α,

where λ(ρ) = (λ1, . . . ,λn) are the eigenvalues of ρ and λ↓(ρ) (resp. λ↑(ρ)

is a rearrangement of

λ(ρ) in decreasing order (resp. increasing order).

Theorem 3.4.3. For 0 ≤ α ≤ z ≤ 1,

{fα,z(ρ, UσU∗) : U ∈ U(H)} =
 n

i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α,
n

i=1

λ↓
i (ρ)

αλ↓
i (σ)

1−α

.

In this chapter, we introduce a new quantum divergence called the α-z-Bures Wasserstein

distance, which is an extension with two parameters of the Bures distance. Then we investigate

its properties. In particular, we solve the least square problem with respect to this divergence

and study its solution. In the next chapter, we introduce a new weighted spectral geometric mean

denoted by Ft(A,B) and study the properties of this quantity. Additionally, we provide some

comparisons between Ft(A,B) and A ⋄t B, which is the solution to the least square problem with

respect to the Bures Wasserstein distance.
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Chapter 4

A new weighted spectral geometric mean

It is well-known [10] that the geometric mean AB is the midpoint of the geodesic

AtB = A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1],

joining A and B under the Riemannian metric δR(A,B) =  log(A−1/2BA−1/2)F , where  · F
denotes the Frobenius norm [11].

The spectral geometric mean of A,B ∈ Pn was introduced by Fiedler and Pták in 1997 [37],

and one of its formulations is

AB := (A−1B)1/2A(A−1B)1/2. (4.1)

It is called the spectral geometric mean because (AB)2 is similar to AB and that the eigenvalues

of their spectral mean are the positive square roots of the corresponding eigenvalues of AB [37,

Theorem 3.2].

Kim and Lee [52] defined the weighted spectral mean:

AtB :=

A−1B

t
A

A−1B

t
, t ∈ [0, 1]. (4.2)

It is obvious that AtB is a curve joining A and B. They studied the relative operator entropy

related to the spectral geometric mean and several properties similar to those of the relative entropy

of Tsallis operator defined via the matrix geometric mean. Recently, Gan, Liu, and Tam [41] and

Gan and Tam [40] studied AtB and obtained some nice properties.

Note that in (4.2) the geometric mean A−1B is a main component of the weighted spectral

mean AtB while the middle term is A, independent of t.

Following that sequence of events, in this chapter we define a new weighted mean, called F -

mean.

The results of this chapter are taken from [33].
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4.1 A new weighted spectral geometric mean and its basic

properties

Definition 4.1.1. Let A,B ∈ Pn. Define

Ft(A,B) := (A−1tB)1/2A2−2t(A−1tB)1/2, t ∈ [0, 1]. (4.3)

It is obvious that F0(A,B) = A and F1(A,B) = B, and hence Ft(A,B) is a curve joining A and

B. For t = 1
2
, F 1

2
(A,B) is the spectral geometric mean (4.1). We call Ft(A,B) weighted F -mean

and it is different from (4.2).

From the Riccati equation, it is obvious that AX = B if and only if X = BA−1B. Therefore,

Ft(A,B) is the unique positive definite solution X to

A2(t−1)X = (A−1tB)1/2.

Proposition 4.1.1. Let A,B ∈ Pn. The following properties hold for all t ∈ [0, 1].

1. Ft(A,B) = A1−tBt if A and B commute.

2. Ft(aA, bB) = a1−tbtFt(A,B) for a, b > 0.

3. U∗Ft(A,B)U = Ft(U
∗AU,U∗BU) for U ∈ U(n).

4. F−1
t (A,B) = Ft(A

−1, B−1).

5. detFt(A,B) = (detA)1−t(detB)t.

6. 2((1− t)A+ tB−1)−1/2 − A2(t−1) ≤ Ft(A,B) ≤ [2((1− t)A−1 + tB)−1/2 − A−2(t−1)]−1.

4.2 The Lie-Trotter formula and weak log-majorization

Theorem 4.2.1. Let A,B ∈ Hn and t ∈ [0, 1]. Then

lim
p→0

F1/p
t (epA, epB) = e(1−t)A+tB.

Theorem 4.2.2. Let (α1, ...,αm−1) ∈ Rm−1, and X1, X2, ..., Xm ∈ Hn. The curve

γ(t) := Fαm−1


etXm ,Fαm−2


etXm−1 ,Fαm−3(...Fα1(e

tX2 , etX1)...


is a differentiable curve with γ(0) = I and

γ′(0) =
m

k=1

m

i=k

αi (1− αk−1)Xk,
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where α0 = 0 and αm = 1. In particular, if αk =
k

k + 1
, for k = 1, 2, ...,m − 1 then γ′(0) =

1

m

m

k=1

Xk.

At the end of this chapter, we compare the weak-log majorization between the F -mean and

the Wasserstein mean, which is the solution to the least square problem with respect to the Bures

distance or Wasserstein distance.

Theorem 4.2.3. Let A,B ∈ Pn and t ∈ [0, 1].

(i) If 0 ≤ t ≤ 1
2
then

Ft(A,B) ≺w log A ⋄t B;

(ii) If 1
2
≤ t ≤ 1 then

F1−t(B,A) ≺w log A ⋄t B.
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Conclusion

This thesis obtained the following main results:

1. We introduce a newWeighted Hellinger distance, denoted as dh,α(A,B), and prove that it acts

as an interpolating metric between the Log-Euclidean and Hellinger metrics. Additionally,

we establish the equivalence between the weighted Bures-Wasserstein and weighted Hellinger

distances. Moreover, we demonstrate that both distances satisfy the in-betweenness property.

Moreover, we also show that among symmetric means, the arithmetic mean is the only one

that satisfies the in-betweenness property in the weighted Bures-Wasserstein and weighted

Hellinger distances.

2. We construct a new quantum divergence called the α-z-Bures-Wasserstein divergence and

demonstrate that this divergence satisfies the in-betweenness property and the data pro-

cessing inequality in quantum information theory. Furthermore, we solve the least squares

problem with respect to this divergence and establish that the solution to this problem

corresponds exactly to the unique positive solution of the matrix equation

m

i=1

wiQα,z (X,Ai) = X,

where Qα,z(A,B) =

A

1−α
2z B

α
z A

1−α
2z

z

and 0 < α ≤ z ≤ 1. Afterwards, we proceed to

study the properties of the solution to this problem and achieve several significant results.

In addition, we provide an inequality for quantum fidelity and its parameterized versions.

Then, we utilize α-z-fidelity to measure the distance between two quantum orbits.

3. We introduce a new weighted geometric mean, called the F -mean. We establish some prop-

erties for the F -mean and prove that it satisfies the Lie-Trotter formula, Furthermore, we

provide a comparison in weak-log majorization between the F -mean and the Wasserstein

mean.
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Further investigation

In the future, we intend to continue the investigation in the following directions:

• Construct some new distance function based on non-Kubo-Ando means.

• Construct a new distance function between two matrices with different dimensions.

• For X, Y > 0 and 0 < t < 1, verify whether the two quantities

Φ1(X, Y ) = Tr((1− t)X + tY )− Tr (XtY )

and

Φ2(X, Y ) = Tr((1− t)X + tY )− Tr (Ft(X, Y ))

are divergences and simultaneously solve related problems.

• Quantity Ft(X, Y ) is new; therefore, we need to establish new properties for this quantity

while also comparing it with the previously known means.
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